111 research outputs found

    On the electrodynamics of moving bodies at low velocities

    Get PDF
    We discuss the seminal article in which Le Bellac and Levy-Leblond have identified two Galilean limits of electromagnetism, and its modern implications. We use their results to point out some confusion in the literature and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We retrieve Le Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a 5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields. We discuss various applications and experiments, such as in magnetohydrodynamics and electrohydrodynamics, quantum mechanics, superconductivity, continuous media, etc. Much of the current technology where waves are not taken into account, is actually based on Galilean electromagnetism

    Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

    Get PDF
    In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents

    Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks

    Get PDF
    International audienceOpen Quantum Walks (OQWs), originally introduced in [2], are quantum generalizations of classical Markov chains. Recently, natural continuous time models of OQW have been developed in [24]. These models, called Continuous Time Open Quantum Walks (CTOQWs), appear as natural continuous time limits of discrete time OQWs. In particular they are quantum extensions of continuous time Markov chains. This article is devoted to the study of homogeneous CTOQW on Z^d. We focus namely on their associated quantum trajectories which allow us to prove a Central Limit Theorem for the "position" of the walker as well as a Large Deviation Principle

    Expression and subcellular localization of cyclin D1 protein in epithelial ovarian tumour cells

    Get PDF
    The expression of cyclin D1 protein in tumour sections from 81 patients with epithelial ovarian cancer was analysed using immunohistochemistry. The tumours that overexpressed cyclin D1 in more than 10% of neoplastic cells were considered positive. Thus overexpression of cyclin D1 was observed in 72/81 (89%) of the cases examined. Protein was detected in both the nucleus and the cytoplasm in 24/81 (30%) and localized exclusively in the cytoplasm in 48/81 (59%) of the tumours. Cyclin D1 was overexpressed in both borderline and invasive tumours. There was no association between protein overexpression and tumour stage and differentiation. Furthermore, no correlation between cyclin D1 expression and clinical outcome was observed. However, in tumours overexpressing cyclin D1 (n = 72), the proportion displaying exclusively cytoplasmic localization of protein was higher in those with serous compared with non-serous histology (P = 0.004, odds ratio 4.8, 95% confidence interval 1.4–19.1). Western analysis using a monoclonal antibody to cyclin D1 identified a 36 kDa protein in homogenates from seven tumours displaying cytoplasmic only and one tumour demonstrating both nuclear and cytoplasmic immunostaining. Using restriction fragment length polymorphism polymerase chain reaction and PCR-multiplex analysis, amplification of the cyclin D1 gene (CCNDI) was detected in 1/29 of the tumours demonstrating overexpression of cyclin D1 protein. We conclude that deregulation of CCND1 expression leading to both cytoplasmic and nuclear protein localization is a frequent event in ovarian cancer and occurs mainly in the absence of gene amplification. © 1999 Cancer Research Campaig

    Numerical simulation scheme of one-and two-dimensional neural fields involving space-dependent delays

    Get PDF
    International audienceNeural Fields describe the spatio-temporal dynamics of neural populations involving spatial axonal connections between neurons. These neuronal connections are delayed due to the finite axonal transmission speeds along the fibers inducing a distance-dependent delay between two spatial locations. The numerical simulation in 1-dimensional neural fields is numerically demanding but may be performed in a reasonable run time by implementing standard numerical techniques. However 2-dimensional neural fields demand a more sophisticated numerical technique to simulate solutions in a reasonable time. The work presented shows a recently developed numerical iteration scheme that allows to speed up standard implementations by a factor 10-20. Applications to some pattern forming systems illustrate the power of the technique

    Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer

    Get PDF
    In prostate cancer, biomarkers may provide additional value above standard clinical and pathology parameters to predict outcome after specific therapy. The purpose of this study is to evaluate an 80 kDa fragment of the cell adhesion molecule e-cadherin as a serum biomarker. A broad spectrum of prostate cancer serum samples, representing different stages of prostate cancer disease, including benign prostatic hyperplasia (BPH), localised (Loc PCA) and metastatic prostate cancer (Met PCA), was examined for the cleaved product. There is a significant difference in the expression level of the 80 kDa fragment in the serum of healthy individuals vs patients with BPH and between BPH vs Loc PCA and Met PCA (P<0.001). Highest expression levels are observed in advanced metastatic disease. In the cohort of Loc PCA cases, there was no association between the 80 kDa serum concentration and clinical parameters. Interestingly, patients with an 80 kDa level of >7.9 μg l−1 at the time of diagnosis have a 55-fold higher risk of biochemical failure after surgery compared to those with lower levels. This is the first report of the application of an 80 kDa fragment of e-cadherin as a serum biomarker in a broad spectrum of prostate cancer cases. At an optimised cutoff, high expression at the time of diagnosis is associated with a significantly increased risk of biochemical failure, potentially supporting its use for a tailored follow-up protocol for those patients

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer

    Get PDF
    Bladder cancer is among the most prevalent malignancies, and is characterised by frequent tumour recurrences and localised inflammation, which may promote tissue invasion and metastasis. Microarray analysis was used to compare gene expression in normal bladder urothelium with that in tumours at different stages of progression. The innate immune response gene, interferon-stimulated gene 15 kDa (ISG15, GIP2), was highly expressed at all stages of bladder cancer as compared to normal urothelium. Western blotting revealed a tumour-associated expression of ISG15 protein. ISG15 exhibited a stage-associated expression, with significantly (P<0.05) higher levels of ISG15 protein in muscle-invasive T2–T4 tumours, compared with normal urothelium. Although ISG15 is involved in the primary immune response, ISG15 expression did not correlate with bladder inflammation. However, immunohistochemical staining revealed expression of ISG15 protein in both cancer cells and stromal immune cells. Interestingly, a significant fraction of ISG15 protein was localised to the nuclei of tumour cells, whereas no nuclear ISG15 staining was observed in ISG15-positive stromal cells. Taken together, our findings identify ISG15 as a novel component of bladder cancer-associated gene expression

    The spatial range of peripheral collinear facilitation

    Get PDF
    Contrast detection thresholds for a central Gabor patch (target) can be modulated by the presence of co-oriented and collinear high contrast Gabors flankers. In foveal vision collinear facilitation can be observed for target-to-flankers relative distances beyond two times the wavelength (λ) of the Gabor's carrier, while for shorter relative distances (<2λ) there is suppression. These modulatory influences seem to disappear after 12λ. In this study, we measured contrast detection thresholds for different spatial frequencies (1, 4 and 6 cpd) and target-to-flankers relative distances ranging from 6 to 16λ, but with collinear configurations presented in near periphery at 4° of eccentricity. Results showed that in near periphery collinear facilitation extends beyond 12λ for the higher spatial frequencies tested (4 and 6 cpd), while it decays already at 10λ for the lowest spatial frequency used (i.e., 1 cpd). In addition, we found that increasing the spatial frequency the peak of collinear facilitation shifts towards larger target-to-flankers relative distances (expressed as multiples of the stimulus wavelength), an effect never reported neither for near peripheral nor for central vision. The results suggest that the peak and the spatial extent of collinear facilitation in near periphery depend on the spatial frequency of the stimuli used
    • …
    corecore